NONEQUILIBRIUM MANY-BODY THEORY OF QUANTUM SYSTEMS

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory.

Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.

GIANLUCA STEFANUCCI is a Researcher at the Physics Department of the University of Rome Tor Vergata, Italy. His current research interests are in quantum transport through nanostructures and nonequilibrium open systems.

ROBERT VAN LEEUWEN is Professor of Physics at the University of Jyväskylä in Finland. His main areas of research are time-dependent quantum systems, manybody theory, and quantum transport through nanostructures.

NONEQUILIBRIUM MANY-BODY THEORY OF QUANTUM SYSTEMS

A Modern Introduction

GIANLUCA STEFANUCCI University of Rome Tor Vergata

ROBERT VAN LEEUWEN University of Jyväskylä

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521766173

 $\ensuremath{\mathbb{C}}$ G. Stefanucci and R. van Leeuwen 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalog record for this publication is available from the British Library

ISBN 978-0-521-76617-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface			xi	
Lis	st of	abbreviations and acronyms	xv	
Fu	ndar	nental constants and basic relations	xvii	
1	Second quantization			
	1.1	Quantum mechanics of one particle	1	
	1.2	Quantum mechanics of many particles	7	
	1.3	Quantum mechanics of many identical particles	10	
	1.4	Field operators	17	
	1.5	General basis states	22	
	1.6	Hamiltonian in second quantization	26	
	1.7	Density matrices and quantum averages	35	
2	Getting familiar with second quantization: model Hamiltonians			
	2.1	Model Hamiltonians	39	
	2.2	Pariser-Parr-Pople model	41	
	2.3	Noninteracting models	45	
		2.3.1 Bloch theorem and band structure	46	
		2.3.2 Fano model	54	
	2.4	Hubbard model	59	
		2.4.1 Particle-hole symmetry: application to		
		the Hubbard dimer	61	
	2.5	Heisenberg model	64	
	2.6	BCS model and the exact Richardson solution	67	
	2.7	Holstein model	71	
		2.7.1 Peierls instability	74	
		2.7.2 Lang-Firsov transformation: the heavy polaron	76	
3	Time-dependent problems and equations of motion			
	3.1	Introduction	81	
	3.2	Evolution operator	82	
	3.3	Equations of motion for operators in the Heisenberg picture	86	

vi			Contents
	3.4 3.5	Continuity equation: paramagnetic and diamagnetic currents Lorentz Force	89 92
4	The	contour idea	95
	4.1	Time-dependent quantum averages	95
	4.2	Time-dependent ensemble averages	100
	4.3	Initial equilibrium and adiabatic switching	106
	4.4	Equations of motion on the contour	110
	4.5	Operator correlators on the contour	114
5	Man	ny-particle Green's functions	125
	5.1	Martin-Schwinger hierarchy	125
	5.2	Truncation of the hierarchy	129
	5.3	Exact solution of the hierarchy from Wick's theorem	135
	5.4	Finite and zero-temperature formalism from the exact solution	140
	5.5	Langreth rules	143
6	One	-particle Green's function	153
	6.1	What can we learn from G ?	153
		6.1.1 The inevitable emergence of memory	155
		6.1.2 Matsubara Green's function and initial preparations	158
		6.1.3 Lesser/greater Green's function: relaxation and quasi-particles	161
	6.2	Noninteracting Green's function	168
		6.2.1 Matsubara component	169
		6.2.2 Lesser and greater components	171
		6.2.3 All other components and a useful exercise	173
	6.3	Interacting Green's function and Lehmann representation	178
		6.3.1 Steady-states, persistent oscillations,	
		initial-state dependence	179
		6.3.2 Fluctuation-dissipation theorem and other	
		exact properties	186
		6.3.3 Spectral function and probability interpretation	190
		6.3.4 Photoemission experiments and interaction effects	194
	6.4	Total energy from the Galitskii-Migdal formula	202
7	Mea	n field approximations	205
	7.1	Introduction	205
	7.2	Hartree approximation	207
		7.2.1 Hartree equations	208
		7.2.2 Electron gas	211
		7.2.3 Quantum discharge of a capacitor	213
	7.3	Hartree-Fock approximation	224
		7.3.1 Hartree-Fock equations	225
		7.3.2 Coulombic electron gas and spin-polarized solutions	228

Cambridge University Press
978-0-521-76617-3 - Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
Gianluca Stefanucci and Robert Van Leeuwen
Frontmatter
More information

Со	ntent	S	vii	
8	Cor	serving approximations: two-particle Green's function	235	
	8.1	Introduction	235	
	8.2	Conditions on the approximate G_2	237	
	8.3	Continuity equation	238	
	8.4	Momentum conservation law	240	
	8.5	Angular momentum conservation law	242	
	8.6	Energy conservation law	243	
9	Conserving approximations: self-energy			
	9.1	Self-energy and Dyson equations I	249	
	9.2	Conditions on the approximate Σ	253	
	9.3	Φ functional	255	
	9.4	Kadanoff-Baym equations	260	
	9.5	Fluctuation-dissipation theorem for the self-energy	264	
	9.6	Recovering equilibrium from the Kadanoff-Baym equations	267	
	9.7	Formal solution of the Kadanoff-Baym equations	270	
10	MBPT for the Green's function			
	10.1	Getting started with Feynman diagrams	275	
	10.2	Loop rule	279	
	10.3	Cancellation of disconnected diagrams	280	
	10.4	Summing only the topologically inequivalent diagrams	283	
	10.5	Self-energy and Dyson equations II	285	
	10.6	G-skeleton diagrams	287	
	10.7	W-skeleton diagrams	289	
	10.8	Summary and Feynman rules	292	
11	MBPT and variational principles for the grand potential 295			
	11.1	Linked cluster theorem	295	
	11.2	Summing only the topologically inequivalent diagrams	299	
	11.3	How to construct the Φ functional	300	
	11.4	Dressed expansion of the grand potential	307	
	11.5	Luttinger-Ward and Klein functionals	309	
	11.6	Luttinger-Ward theorem	312	
	11.7	Relation between the reducible polarizability and the Φ functional	314	
	11.8	Ψ functional	318	
	11.9	Screened functionals	320	
12	MBPT for the two-particle Green's function 323			
	12.1	Diagrams for G_2 and loop rule	323	
	12.2	Bethe-Salpeter equation	326	
	12.3	Excitons	331	
	12.4	Diagrammatic proof of $K = \pm \delta \Sigma / \delta G$	337	
	12.5	Vertex function and Hedin equations	339	

Cambridge University Press
978-0-521-76617-3 - Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
Gianluca Stefanucci and Robert Van Leeuwen
Frontmatter
More information

viii		Contents
13 A _l	pplications of MBPT to equilibrium problems	347
13		347
	.2 Fluctuation-dissipation theorem for P and W	352
13	.3 Correlations in the second-Born approximation	354
	13.3.1 Polarization effects	357
13	.4 Ground-state energy and correlation energy	362
13	.5 GW correlation energy of a Coulombic electron gas	367
13	.6 T-matrix approximation	373
	13.6.1 Formation of a Cooper pair	378
14 Li	near response theory: preliminaries	385
14.		385
14.	0 1 5	386
	14.2.1 Discrete-discrete coupling	387
	14.2.2 Discrete-continuum coupling	390
	14.2.3 Continuum-continuum coupling	396
14.	.3 Fermi golden rule	40
14.	4 Kubo formula	404
15 Li	inear response theory: many-body formulation	407
15.	.1 Current and density response function	407
15	.2 Lehmann representation	41
	15.2.1 Analytic structure	414
	15.2.2 The <i>f</i> -sum rule	416
	15.2.3 Noninteracting fermions	418
15	.3 Bethe–Salpeter equation from the variation of a conserving G	420
15.	.4 Ward identity and the <i>f</i> -sum rule	424
15	.5 Time-dependent screening in an electron gas	427
	15.5.1 Noninteracting density response function	428
	15.5.2 RPA density response function	43
	15.5.3 Sudden creation of a localized hole	437
	15.5.4 Spectral properties in the G_0W_0 approximation	44
16 A	pplications of MBPT to nonequilibrium problems	455
16	.1 Kadanoff-Baym equations for open systems	457
16	.2 Time-dependent quantum transport: an exact solution	460
	16.2.1 Landauer-Büttiker formula	467
16	.3 Implementation of the Kadanoff-Baym equations	47
	16.3.1 Time-stepping technique	472
	16.3.2 Second-Born and GW self-energies	473
16	.4 Initial-state and history dependence	476
16		482
16	<u> </u>	484
	16.6.1 Keldysh Green's functions in the double-time plane	485
	16.6.2 Time-dependent current and spectral function	486

Cambridge University Press
978-0-521-76617-3 - Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction
Gianluca Stefanucci and Robert Van Leeuwen
Frontmatter
More information

Со	ntents	ix
	16.6.3 Screened interaction and physical interpretation16.7 Inbedding technique: how to explore the reservoirs16.8 Response functions from time-propagation	490 492 496
	Appendices	
A	From the N roots of 1 to the Dirac δ -function	503
B	Graphical approach to permanents and determinants	506
С	Density matrices and probability interpretation	517
D	Thermodynamics and statistical mechanics	523
E	Green's functions and lattice symmetry	529
F	Asymptotic expansions	534
G	Wick's theorem for general initial states	537
Н	BBGKY hierarchy	552
I	From δ -like peaks to continuous spectral functions	555
J	Virial theorem for conserving approximations	559
K	Momentum distribution and sharpness of the Fermi surface	563
L	Hedin equations from a generating functional	566
M	Lippmann-Schwinger equation and cross-section	572
N	Why the name Random Phase Approximation?	577
0	Kramers-Kronig relations	582
Р	Algorithm for solving the Kadanoff-Baym equations	584
Re	ferences	587
Ine	dex	593

Preface

This textbook contains a pedagogical introduction to the theory of Green's functions *in* and *out* of equilibrium, and is accessible to students with a standard background in basic quantum mechanics and complex analysis. Two main motivations prompted us to write a monograph for beginners on this topic.

The first motivation is research oriented. With the advent of nanoscale physics and ultrafast lasers it became possible to probe the correlation between particles in excited quantum states. New fields of research like, e.g., molecular transport, nanoelectronics, Josephson nanojunctions, attosecond physics, nonequilibrium phase transitions, ultracold atomic gases in optical traps, optimal control theory, kinetics of Bose condensates, quantum computation, etc. added to the already existing fields in mesoscopic physics and nuclear physics. The Green's function method is probably one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has already proven to be extremely useful in several of the aforementioned contexts. Extending the method to deal with the new emerging nonequilibrium phenomena holds promise to facilitate and quicken our comprehension of the excited state properties of matter. At present, unfortunately, to learn the nonequilibrium Green's function formalism requires more effort than learning the equilibrium (zero-temperature or Matsubara) formalism, despite the fact that *nonequilibrium Green's functions are not more difficult*. This brings us to the second motivation.

The second motivation is educational in nature. As students we had to learn the method of Green's functions at zero temperature, with the normal-orderings and contractions of Wick's theorem, the adiabatic switching-on of the interaction, the Gell-Mann-Low theorem, the Feynman diagrams, etc. Then we had to learn the finite-temperature or Matsubara formalism where there is no need of normal-orderings to prove Wick's theorem, and where it is possible to prove a diagrammatic expansion without the adiabatic switching-on and the Gell-Mann-Low theorem. The Matsubara formalism is often taught as a disconnected topic but the diagrammatic expansion is exactly the same as that of the zero-temperature formalism. Why do the two formalisms look the same? Why do we need more "assumptions" in the zero-temperature formalism? And isn't it enough to study the finite-temperature formalism? After all zero temperature is just one possible temperature. When we became post-docs we bumped into yet another version of Green's functions, the nonequilibrium Green's functions or the so called Keldysh formalism. And again this was another different way to prove Wick's theorem and the diagrammatic expansion. Furthermore, while several excellent textbooks on the equilibrium formalisms are available, here the learning process is considerably slowed down by the absence of introductory textbooks. There exist few review

xii

Cambridge University Press 978-0-521-76617-3 - Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction Gianluca Stefanucci and Robert Van Leeuwen Frontmatter <u>More information</u>

Preface

articles on the Keldysh formalism and they are scattered over the years and the journals. Students have to face different jargons and different notations, dig out original papers (not all downloadable from the web), and have to find the answer to lots of typical newcomer questions like, e.g., why is the diagrammatic expansion of the Keldysh formalism again the same as that of the zero-temperature and Matsubara formalisms? How do we see that the Keldysh formalism reduces to the zero-temperature formalism in equilibrium? How do we introduce the temperature in the Keldysh formalism? It is easy to imagine the frustration of many students during their early days of study of nonequilibrium Green's functions. In this book we introduce only *one* formalism, which we call the *contour formalism*, and we do it using a very pedagogical style. The contour formalism is not more difficult than the zero-temperature, Matsubara or Keldysh formalism and we explicitly show how it reduces to those under special conditions. Furthermore, the contour formalism provides a natural answer to all previous questions. Thus the message is: *there is no need to learn the same thing three times*.

Starting from basic quantum mechanics we introduce the contour Green's function formalism step by step. The physical content of the Green's function is discussed with particular attention to the time-dependent aspect and applied to different physical systems ranging from molecules and nanostructures to metals and insulators. With this powerful tool at our disposal we then go through the Feynman diagrams, the theory of conserving approximations, the Kadanoff-Baym equations, the Luttinger-Ward variational functionals, the Bethe-Salpeter equation, and the Hedin equations.

This book is not a collection of chapters on different applications but a self-contained introduction to mathematical and physical concepts of general use. As such, we have preferred to refer to books, reviews and classical articles rather than to recent research papers whenever this was possible. We have made a serious effort in organizing apparently disconnected topics in a *logical* instead of *chronological* way, and in filling many small gaps. The adjective "modern" in the title refers to the presentation more than to specific applications. The overall goal of the present book is to derive a set of kinetic equations governing the quantum dynamics of many identical particles and to develop perturbative as well as nonperturbative approximation schemes for their solution.

About 600 pages may seem too many for a textbook on Green's functions, so let us justify this voluminousness. First of all *there is not a single result which is not derived*. This means that we have inserted several intermediate steps to guide the reader through every calculation. Secondly, for every formal development or new mathematical quantity we present carefully selected examples which illustrate the physical content of what we are doing. Sometimes the reader will find further supplementary discussion or explanations printed in smaller type; these can be skipped at a first reading. Without examples and illustrations (more than 250 figures) this book would be half the size but the actual understanding would probably be much less. The large number of examples compensates for the moderate number of exercises. Thirdly, in the effort of writing a comprehensive presentation of the various topics we came across several small subtleties which, if not addressed and properly explained, could give rise to serious misunderstandings. We have therefore added many remarks and clarifying discussions throughout the text.

The structure of the book is illustrated in Fig. 1 and can be roughly partitioned in three parts: mathematical tools, approximation schemes, and applications. For a detailed list of

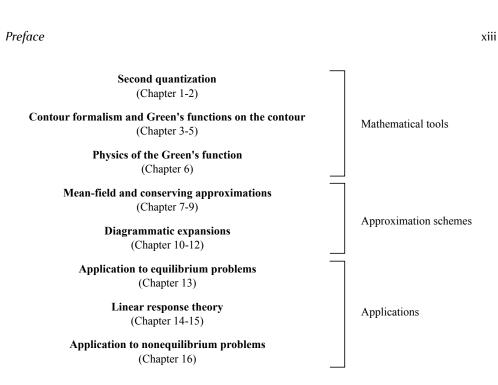


Figure 1 Structure of the book

topics the reader can look at the table of contents. Of course the choice of topics reflects our personal background and preferences. However, we feel reasonably confident to have covered all fundamental aspects of Green's function theory in and out of equilibrium. We have tried to create a self-contained and self-study book capable of bringing the undergraduate or PhD student to the level of approaching modern literature and enabling him/her to model or solve new problems with physically justified approximations. If we are successful in this endeavor it will be due to the enthusiastic and motivated students in Rome and Jyväskylä to whom we had the privilege to teach part of this book. We thank them for their feedback from which we indeed benefited enormously.

Speaking of thanks: our first and biggest thank you goes to Carl-Olof Almbladh and Ulf von Barth who introduced us to the wonderful world of many-body perturbation theory and Green's function theory during our post-doc years in Lund. Only now that we have been forced to deepen our understanding in order to explain these methods can we fully appreciate all their "of-course-I-don't-need-to-tell-you" or "you-probably-already-know" answers to our questions. We are also thankful to Evert Jan Baerends, Michele Cini, and Hardy Gross from whom we learned a large part of what today is our background in physics and chemistry and with whom we undertook many exciting research projects. We wish to express our gratitude to our PhD students, post-docs and local colleagues Klaas Giesbertz, Petri Myöhänen, Enrico Perfetto, Michael Ruggenthaler, Niko Säkkinen, Adrian Stan, Riku Tuovinen, and Anna-Maija Uimonen, for providing us with many valuable suggestions and for helping out in generating several figures. The research on the Kadanoff–Baym equations

xiv

Preface

and their implementation which forms the last chapter of the book would not have been possible without the enthusiasm and the excellent numerical work of Nils Erik Dahlen. We are indebted to Heiko Appel, Karsten Balzer, Michael Bonitz, Raffaele Filosofi, Ari Harju, Maria Hellgren, Stefan Kurth, Matti Manninen, Kristian Thygesen, and Claudio Verdozzi with whom we had many inspiring and insightful discussions which either directly or indirectly influenced part of the contents of the book. We further thank the Department of Physics and the Nanoscience Center of the University of Jyväskylä and the Department of Physics of the University of Rome Tor Vergata for creating a very pleasant and supportive environment for the writing of the book. Finally we would like to thank a large number of people, too numerous to mention, in the research community who have shaped our view on many scientific topics in and outside of many-body theory.

Abbreviations and acronyms

- a.u. : atomic units
- BvK : Born-von Karman
- e.g. : exempli gratia
- HOMO : highest occupied molecular orbital
- i.e. : id est
- KMS: Kubo-Martin-Schwinger
- l.h.s. : left hand side
- LUMO : lowest unoccupied molecular orbital
- LW : Luttinger-Ward
- MBPT : Many-body perturbation theory
- PPP : Pariser-Parr-Pople
- QMC : Quantum Monte Carlo
- r.h.s. : right hand side
- **RPA** : Random Phase Approximation
- WBLA : Wide Band Limit Approximation
- XC : Exchange-Correlation

Fundamental constants and basic relations

Fundamental constants

Electron charge: e = -1 a.u. $= 1.60217646 \times 10^{-19}$ Coulomb Electron mass: $m_e = 1$ a.u. $= 9.10938188 \times 10^{-31}$ kg Planck constant: $\hbar = 1$ a.u. $= 1.054571 \times 10^{-34}$ Js $= 6.58211 \times 10^{-16}$ eVs Speed of light: c = 137 a.u. $= 3 \times 10^5$ km/s Boltzmann constant: $K_{\rm B} = 8.3 \times 10^{-5}$ eV/K

Basic quantities and relations

Bohr radius: $a_{\rm B} = \frac{\hbar^2}{m_e e^2} = 1 \text{ a.u.} = 0.5 \text{ Å}$ Electron gas density: $n = \frac{(\hbar p_{\rm F})^3}{3\pi^2} = (p_{\rm F} \text{ being the Fermi momentum})$ Electron gas radius: $\frac{1}{n} = \frac{4\pi}{3} (a_{\rm B} r_s)^3$, $r_s = \frac{(9\pi/4)^{1/3}}{\hbar a_{\rm B} p_{\rm F}}$ Plasma frequency: $\omega_{\rm p} = \sqrt{\frac{4\pi e^2 n}{m_e}}$ (*n* being the electron gas density) Rydberg $R = \frac{e^2}{2a_{\rm B}} = 0.5 \text{ a.u.} \simeq 13.6 \text{ eV}$ Bohr magneton $\mu_{\rm B} = \frac{e\hbar}{2m_e c} = 3.649 \times 10^{-3} \text{ a.u.} = 5.788 \times 10^{-5} \text{ eV/T}$ Room temperature ($T \sim 300 \text{ K}$) energy: $K_B T \sim \frac{1}{40} \text{ eV}$ $\hbar c \sim 197 \text{ MeV fm}$ (I fm = 10^{-15} m) $m_e c^2 = 0.5447 \text{ MeV}$

xvii